國立虎尾科技大學電機工程系 112 學年度二技部課程地圖

本系教育目標

- 1. 奠定堅實電機工程理論基礎與實務技術。
- 2. 注重專業理論以培養研究創新知能。
- 3. 培育人文素養與前瞻視野並善盡社會責任。

具體內容

- 1. 設計完整的電子、電力、電腦、控制、通訊與積體電路設計等基礎專業課程。
- 2. 由實驗課程訓練學生實務技術,培養對問題分析和技術研究的能力。
- 3. 應用專題製作,培養溝通的能力和團隊合作的精神。
- 4. 參與專題競賽和產學合作,激發學生研發興趣,培育其創新之能力。
- 5. 教育學生重視社會公民責任,尊重專業與行政倫理,健全人格修養。
- 6. 透過通識課程教育,培養對文化、藝術、音樂之興趣與鑑賞能力。
- 7. 經由原文教材及技術論文之基礎訓練,提升學生原文閱讀能力,進而引導其運用各種學習工具,加強外文之訓練,同時鼓勵學生參與國際姐妹學校交流,以提升個人視野。

學生核心能力

- 1. 具備電機工程專業知識。
- 2. 能運用電腦及儀器設計電路、執行實驗並解析實驗數據。
- 3. 具備電機工程實務技術與使用工具之能力。
- 4. 具備軟、硬體應用能力,結合感測與驅動硬體電路,以完成特定功能的模組設計。
- 5. 具備團隊合作的精神和溝通協調的能力。
- 6. 具備研究創新的精神,能系統化分析與處理問題。
- 7. 能關心時事、了解電機工程技術對於社會與環境的影響,建立經常學習的觀念,以持續吸取新知。
- 8. 理解專業倫理及社會責任。

本系課程列表

- 1. 專業選修科目除表列課程外,亦可修習各學院所開之課程,畢業選修科目總學分數,外系至多上限承認 12 學分;惟文理及管理學院至多承認 6 學分。
- 2. 畢業班每學期修習學分(包含必、選修),至少須在本系選修9小時。
- 3. 全民國防教育軍事訓練課程不列入畢業學分計算。
- 4. 第一學年起上下學期各至少需修讀一門「社會責任實踐教育」,並於畢業前修畢;選讀「社會責任實踐教育(三)、(四)」者,得申請免修「社會責任實踐教育(一)或(二)」。
- 5. 畢業學分必須包含系專業選修科目(I)「數學及基礎科學」至少9學分。
- 6. 校外實習課程之實施內容與實習時數規定如本系「學生校外實習課程作業要點」。
- 7. 通識課程(一)~(二)必須有一學期選修與「專業倫理」相關之課程。

課程分類	課程名稱(建議修課年級)		
校共同必修科目	國文(1)、社會責任實踐教育一(1)、體育三(1)、體育四(1)、英文(1)、社會責任實踐教育二(1)、通識教育講座(1)、通識課程一(2)、通識課程二(2)		
系專業必修科目	電路學(1)、工程數學(1)、訊號與系統(1)、可規劃邏輯電路設計實習(1)、電力電子學(1)、電子學實習(1)、通訊系統(1)、實務專題一(1)、實務專題二(2)、電力電子學實習(2)		
系選修科目(I)	生物科技概論(1)、線性代數(1)、機率與統計(1)、複變函數(1)、離散數學(2)、向量分析(2)、數值方法(2)		
電力與電能處理組	電力系統(1)、電力電子電路製作(2)、電力電子分析與模擬(2)、電磁干擾防制概論(2)、電力電子實務應用專題(2)、電子安定器設計(2)、保護電驛(2)		
系統控制組	微電腦系統應用(1)、Python 程式設計與實作(1)、人機介面(1)、智慧型機器人(1)、嵌入式系統概論(1)、工業程序控制(1)、人工智慧(2)、模糊控制(2)、人工智慧專題製作一(2)、專家系統(2)、類神經網路(2)、機器學習實務(2)、人工智慧專題製作二(2)		
系統晶片組	超大型積體電路設計導論(1)、積體電路佈局與驗證(1)、作業系統(1)、硬體描述語言程式設計與模擬(1)、電路板產業與製造概論(1)、嵌入式系統概論(1)、計算機結構(1)、系統晶片應用(1)、數位積體電路設計(2)、處理器設計與實作(2)、類比積體電路設計導論(2)		
通訊與網路組	電腦網路概論(1)、MATLAB 程式設計與應用(1)、Python 程式設計與實作(1)、數位訊號處理導論(2)、電磁學(2)、無線通訊網路導論(2)、數位通訊(2)、電磁干擾防制概論(2)、人工智慧專題製作一(2)、無線通訊系統(2)、數位通訊模擬(2)、影像處理(2)、網路程式設計(2)、機器學習實務(2)、人工智慧專題製作二(2)		
其他選修	校外實習二(1)、證照實務一(1)、證照實務二(2)、科技日文(2)、校外實習五(2)		

未來發展

升學	就業	
就讀國內外電機、電子、資訊、光電、電信工程等相 關研究所繼續深造	電機工程師、VLSI 設計工程師、通信系統工程師、計算機軟/硬體工程師等職務、或可從事技職教育體系相關科系之教學工作	

課程規劃架構圖

電機工程系二技課程架構圖 (112學年)

第一	學年	第二	第二學年	
上	下	上	下	
社會責任實踐教育(一)	社會責任實踐教育(二)	通識課程(一)		
體育(三)	體育(四)	通識課程(二)		
國文	英文			
	通識教育講座			
電路學	電力電子學	實務專題(二)		
工程數學	電子學	電力電子學實習		
訊號與系統	電子學實習			
可規劃邏輯電路設計與實習	實務專題(一)			
	通訊系統			
生物科技概論	線性代數	離散數學	數值方法	
	機率與統計	向量分析		
	複變函數	1,3,2,7,1,		
電力系統		電力電子分析與模擬	電子安定器設計	
		電磁干擾防制概論	保護電驛	
		電力電子電路製作	電力電子實務應用專題	
微電腦系統應用	人機介面	人工智慧	專家系統	
Python程式設計與實作	智慧型機器人	類神經網路	機器學習實務	
	工業程序控制	模糊控制	人工智慧專題製作(二)	
	嵌入式系統概論	人工智慧專題製作(一)		
超大型積體電路設計導論	積體電路佈局與驗證	數位積體電路設計	類比積體電路設計導論	
	作業系統	處理器設計與實作		
	硬體描述語言程式設計與模擬			
	計算機結構			
	系統晶片應用			
	電路板產業與製造概論			
	嵌入式系統概論			
電腦網路概論		數位訊號處理導論	無線通訊系統	
MATLAB程式設計與應用		電磁學	數位通訊模擬	
Python程式設計與實作		無線通訊網路導論	影像處理	
		數位通訊	網路程式設計	
		電磁干擾防制概論	機器學習實務	
		人工智慧專題製作(一)	人工智慧專題製作(二)	
	校外實習(二)	證照實務(二)	科技日文	
	證照實務(一)	······································	校外實習(五)	
校共同必修科目 電力與電能處理組 4.8%				

校共同必修科目電力與電能處理組 _ 系必修科目_ 系統控制組

其他選修 通訊與網路組

系統晶片組

1.最低畢業學分72學分,其中校共同必修科目9學分,專業必修科目25學分,專業選修科目至少38學分。
2.專業選修科目除表列課程外,亦可修習各學院所開之課程,畢業選修科目總學分數,外系至多上限承認12學分;惟文理及管理學院至多承認6學分。
3.畢業班每學期修習學分(包含必、選修),至少須在本系選修9小時。
4.全民國防教育軍事訓練課程不列人畢業學分計算。
5.第一學年起上下學期各至少需修讀一門「社會責任實踐教育」,並於畢業前修畢;選讀「社會責任實踐教育(三)、(四)」者,得申請免修「社會責任實踐教育(一)或(二)」。
6.畢業學分必須包含系專業還修科目(1)「數學及基礎科學」至少9學分。
7.校外實習課程之實施內容與實習時數規定如本系「學生校外實習課程作業要點」。
8.通識課程(一)。(二)必須有一學期選修與「專業倫理」相關之課程。
9.112學年度適用。